Well-posedness of the Goursat problem and stability for point source inverse backscattering
نویسندگان
چکیده
منابع مشابه
Stability for inverse point source problem
What is the stability of recovering the location of xj . Suppose the number of point sources is known as m. Or we formulate the stability argument as following statement. Statement 1.1 If ul for l = 1, 2 be the solutions of equation 1 associated with Cauchy data (f , g) and sources F l = ∑m j=1 P l jδ(x − xj), if we have ‖(f, g) − (f, g)‖ ≤ , can we find a permutation π of {1, 2, . . . ,m} such...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولConditional Well-Posedness for an Elliptic Inverse Problem
For the elliptic equation −∇ · (p(x)∇v) + λq(x)v = f, x ∈ Ω ⊂ R, the problem of determining when one or more of the coefficient functions p, q, and f depends continuously on the solution functions v = vp,q,f,λ, is considered.
متن کاملWell-posedness, Stability and Conservation for a Discontinuous Interface Problem
The advection equation is studied in a completely general two domain setting with different wave-speeds and a time-independent jump-condition at the interface separating the domains. Well-posedness and conservation criteria are derived for the initial-boundary-value problem. The equations are semidiscretized using a finite difference method on summation-by-parts (SBP) form. The stability and co...
متن کاملAkkouchi WELL - POSEDNESS OF THE FIXED POINT PROBLEM FOR φ - MAX - CONTRACTIONS
We study the well-posedness of the fixed point problem for self-mappings of a metric space which are φ-max-contractions (see [6]).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2017
ISSN: 0266-5611,1361-6420
DOI: 10.1088/1361-6420/aa941f